多轴差分吸收光谱技术测量对流层 SO2垂直廓线 及柱浓度

牟福生, 雒静*, 李素文**, 单巍, 韦民红, 汪徐德

淮北师范大学物理与电子信息学院,安徽 淮北 235000

摘要 针对被动多轴差分吸收光谱技术(MAX-DOAS)反演痕量气体 SO₂中吸收强度弱以及易受反演波段和大气 气溶胶状态影响的问题,研究了基于地基 MAX-DOAS的对流层 SO₂ 垂直廓线及垂直柱浓度的反演方法。通过反 演误差对比确定了 SO₂的最佳反演波段(307~330 nm),并精确获取了差分斜柱浓度。鉴于大气中气溶胶状态是 影响 SO₂等痕量气体反演的重要因素,反演中采用两步反演方法:第一步通过测量 O₄气体的差分斜柱浓度来反演 气溶胶廓线;第二步将气溶胶廓线输入到辐射传输模型中,利用痕量气体浓度垂直反演算法获取对流层(0~4 km) 中 SO₂的垂直分布廓线和垂直柱浓度。将 SO₂廓线在 0~100 m 的反演结果和地面点式仪器数据进行对比,结果 发现两者的一致性较高。研究表明,基于 MAX-DOAS 反演对流层中 SO₂的垂直分布及垂直柱浓度是一种有效的 手段。

关键词 大气光学;对流层 SO₂垂直廓线;被动多轴差分吸收光谱技术;气溶胶
 中图分类号 X122 文献标识码 A doi: 10.3788/AOS201939.0801001

Measuring Vertical Profile and Vertical Column Density of SO₂ in Troposphere by Multi-Axis Differential Optical Absorption Spectroscopy

Mou Fusheng, Luo Jing*, Li Suwen**, Shan Wei, Wei Minhong, Wang Xude School of Physics and Electronic Information, Huaibei Normal University, Huaibei, Anhui 235000, China

Abstract Sulfur dioxide (SO_2) retrieval results obtained by the multi-axis differential optical absorption spectroscopy (MAX-DOAS) have weak absorption intensity and are vulnerable to inversion bands and the state of aerosol. An inversion method for the vertical profile and vertical column density of tropospheric SO₂ using groundbased MAX-DOAS is investigated. The SO₂ optimum inversion band (307-330 nm) is determined by comparing the inversion errors. The differential slant column density is obtained precisely. As the state of aerosols in the atmosphere is an important factor affecting the inversion of trace gases such as SO_2 , a two-step inversion method is used. The first step is to retrieve the aerosol profile by measuring the differential slant column density of O_4 gas. The second step is to input the aerosol profile into the radiation transmission model, and the vertical distribution profile (0-4 km) and vertical column density of the tropospheric SO_2 are obtained by the vertical inversion algorithm of trace gas concentration. The 0-100 m inversion results of the SO_2 profile are compared to ground point instrument data, and the comparison results demonstrate that the two techniques agree well. The study shows that MAX-DOAS is an effective method for retrieving the vertical distribution and vertical column density of tropospheric SO_2 . **Key words** atmospheric optics; vertical profile of SO_2 in troposphere; passive multi-axis differential optical absorption spectroscopy; aerosol

OCIS codes 010.1290; 120.0280; 300.6540; 320.7140

1 引 言

随着工业化进程的加快,矿物燃料的使用产生

了大量污染气体,严重影响了对流层 SO₂等痕量气体的浓度分布。SO₂是大气的重要组分,其含量的增加不仅危害人体健康,而且对酸雨、城市二次气溶

基金项目:国家自然科学基金(41705012,41875040,41605013,11504121)、安徽省高校自然科学基金(KJ2017B013,KJ2018A0392,KJ2015A069,KJ2017A381)

* E-mail: ljmfs0926@163.com; ** E-mail: swli@chnu.edu.cn

收稿日期: 2019-02-13; 修回日期: 2019-03-21; 录用日期: 2019-04-08

胶的形成具有重要影响^[1-2]。因此,监测 SO₂等气体 的空间分布对了解其在大气化学过程中的作用、了 解其发展演化的规律、制定污染防控措施等具有重 要作用^[3-4]。

目前,在针对 SO₂的监测技术中,点式仪器和长 光程差分吸收光谱技术(DOAS)主要用于获取近地 面的 SO₂浓度,时间分辨率高,但测量区域较小^[5]; 卫星观测可以获取全球范围的 SO₂柱浓度,但其空 间分辨率较低[6]。近年来,多轴差分吸收光谱技术 (MAX-DOAS)在对流层痕量气体垂直分布和垂直 柱浓度(VCD)测量方面被广泛应用,该技术能够实 现实时、连续和多组分同时测量,并可通过多角度的 扫描方式提高其对近地面痕量气体的敏感性[7-12]。 目前,国外主要利用 DOAS 监测火山排放的 SO2分 布,2007年,德国海德堡大学的 Bobrowski 等[13]利 用 MAX-DOAS 获得了火山烟羽截面中 SO2 的二维 分布; 2014 年, 瑞典查尔莫斯技术大学的 Conde 等^[14]利用扫描 DOAS 研究了火山 SO₂的排放通量。 近年来,有学者开展了基于 DOAS 技术的城市 SO2 时空分布研究,如,德国马普化学所的 Wang 等^[15] 利用地基 MAX-DOAS 研究了 2011~2014 年无锡 地区 SO₂的时间变化规律和垂直分布。由于在紫外 可见波段内 SO₂ 的吸收较强且受其他气体的影响 较小,国内研究人员主要开展了 SO2 垂直廓线和柱 浓度方面的研究^[16-17],如,田鑫等^[18]基于 MAX-DOAS 和几何方法获得了 SO₂柱浓度。鉴于 SO₂的 吸收弱,被动 DOAS 获取的 SO2 反演结果易受拟合 波段和气溶胶状态等因素的影响[19-20],而利用地基 MAX-DOAS 开展 SO2 垂直分布研究的报道还比 较少。

本文利用地基 MAX-DOAS 在合肥地区开展了 连续观测实验,基于误差分析研究了 SO₂反演的最 佳波段,结合模型和最优估算方法获得了 SO₂垂直 分布廓线和垂直柱浓度,分析了观测期间 SO₂垂直 柱浓度的变化规律,将最底层(0~100 m)廓线的反 演结果与地面点式仪器数据进行对比,发现两者具 有较好的一致性。

2 实验系统和反演算法

2.1 MAX-DOAS 系统与差分斜柱浓度反演

采用搭建的二维 MAX-DOAS 系统进行实验,观测地点位于合肥西北郊区的科学岛。MAX-DOAS 系统主要由望远镜、二维云台、光谱仪、电荷耦合器件(CCD)和计算机组成。望远镜接收不同仰角的天空

散射光,通过光纤传导至光谱仪,经分光和 CCD 采集 后获得光谱信息^[16]。望远镜安装在二维云台上,可 以在 0°~360°方位角和 0°~90°俯仰角范围内进行观 测。在观测中,方位角设置为正北方向。为了减少光 谱仪因温度改变而造成的波长漂移,将其置于温控 单元。光谱仪观测波段为 300~390 nm,分辨率约 为 0.35 nm, 一个循环共 8 个仰角(2°、3°、6°、8°、10°、 20°、30°、90°),扫描一个循环约需 15 min。在紫外 波段,O₃的强吸收会影响 SO₂测量的信噪比,为了 获得最佳波段,选取 2013 年 12 月 28 日在 2°仰角下 得到的光谱进行反演,结果如图 1(a) 所示。获得的 SO₂差分斜柱浓度对比结果表明,与其他波段相比, 307~330 nm 波段更宽,能包含更多 SO₂的吸收结 构,全天拟合误差最小,且反演误差受太阳天顶角 (SZA)的影响较小,如图1(b)所示。故研究中采用 307~330 nm 反演 SO₂。当天顶角 θ_{SZA} 较大时, O₃ 吸收引起的干扰也较大,故反演中去除天顶角大于 75°的数据^[15]。

- 图 1 对 2013 年 12 月 28 日 2°仰角下得到的光谱进行反 演的结果。(a) SO₂的反演结果;(b)不同波段的反 演误差
- Fig. 1 Retrieval results under elevation of 2° on December 28th, 2013. (a) Retrieval result of SO₂; (b) retrieval error at different wavelengths

基于朗伯-比尔定律,利用 DOAS 算法反演 O₄ 和 SO₂的差分斜柱浓度。为了去除太阳夫琅禾费结 构和大气平流层变化带来的影响,选取每个测量循 环中的天顶光谱作为参考光谱。采用 WINDOAS 软件分析测量光谱,非线性参数设为常数 offset,具 体反演设置如表 1 所示。图 2 为选取 2013 年 12 月 28 日 11:56 时 3°仰角下得到光谱,对 O₄和 SO₂进 行拟合,结果如图 2 所示。图 2(a)和图 2(b)分别给 出了 O₄和 SO₂的差分光学厚度,它们对应的差分斜 柱浓度分别为(1.49 \pm 0.06)×10⁴³ molecule² · cm⁻⁵ 和 1.65×10¹⁷ molecule · cm⁻²,图 2(c)和图 2(d)分 别给出了拟合的剩余结构的均方根,分别为 1.51× 10⁻³和 1.21×10⁻³,其对应的拟合误差分别为 4% 和 1.2%。

表1 O₄和SO₂反演设置

Table 1 Settings used for O4 and SO2 retrievals

2.2 垂直廓线和垂直柱浓度反演算法

MAX-DOAS技术中多个仰角的测量对不同高度的大气有着不同的灵敏度,因此可以通过测量多

仰角的 SO₂ 差分斜柱浓度来反演其垂直分布^[19]。 大气中气溶胶的状态是影响 SO₂等痕量气体反演 的重要因素,因此反演中采用两步反演方法:第一 步通过测量 O₄气体的差分斜柱浓度反演气溶胶廓 线;第二步将气溶胶廓线输入到辐射传输模型,利 用最优估算方法获取对流层(0~4 km)中 SO₂的 垂直分布廓线和垂直柱浓度。在简化的 MAX-DOAS 痕量气体反演方法中,模型采用固定不变的 气溶胶状态。

图 3(a)给出了 MAX-DOAS 反演的气溶胶光 学厚度(AOD),图 3(b)给出了简化方法结果和两步 法结果之间的对比。简化方法的气溶胶采用晴朗天 气下典型指数下降型廓线,光学厚度为 0.3。由 图 3(b)可知,因典型气溶胶状态与真实大气存在差 异^[20],简化方法通常会高估对流层 SO₂的垂直柱浓 度^[15],两者最大相对偏差可达 150.4%(12 月 31 日)。由多仰角 O₄、SO₂差分斜柱浓度(状态量 x) 反演气溶胶和 SO₂垂直分布廓线的问题是病态的, 本文采用最优估算法解决这一问题。通过迭代和最 小化价值函数 $\chi^2(x)$ 获取测量值 y 和先验值 x_a 之间 的最优解 x

Fig. 3 Retrieval results of VCD of tropospheric SO₂.
(a) AOD retrieved by MAX-DOAS; (b) measured aerosol profiles and typical aerosol profiles are used as input to obtain VCD of tropospheric SO₂

$$\boldsymbol{\chi}^{2}(\boldsymbol{x}) = [\boldsymbol{F}(\boldsymbol{x}) - \boldsymbol{y}]^{\mathrm{T}} \boldsymbol{S}_{\varepsilon}^{-1} [\boldsymbol{F}(\boldsymbol{x}) - \boldsymbol{y}] + [\boldsymbol{x} - \boldsymbol{x}_{\mathrm{a}}]^{\mathrm{T}} \boldsymbol{S}_{\mathrm{a}}^{-1} [\boldsymbol{x} - \boldsymbol{x}_{\mathrm{a}}], \qquad (1)$$

式中:F(x)为大气辐射传输模型,表示对应输入信息x的模拟结果;S_e和S_a分别为测量不确定度和 先验廓线的协方差矩阵。S_e由测量误差决定,该值 越小,表示反演结果越依赖于测量信息;S_a决定了 允许反演结果偏离先验值的程度,该值越小,表示反 演结果越依赖于先验值。反演高度为 0~4 km,格 子高度为 200 m,在反演过程中采用非线性迭代方 法,即

$$\boldsymbol{x}_{i+1} = \boldsymbol{x}_i + [(1+\boldsymbol{\gamma}_i)\boldsymbol{S}_a^{-1} + \boldsymbol{K}_i^{\mathrm{T}}\boldsymbol{S}_{\varepsilon}^{-1}\boldsymbol{K}_i]^{-1} \times$$

 $\{K_i^T S_{\epsilon}^{-1} [y - F(x_i)] - S_a^{-1} [x_i - x_a]\},$ (2) 式中:*i* 为迭代次数; γ_i 为迭代系数; K_i 为权重函数, 表示改变气溶胶消光或者 SO₂垂直廓线时测量的敏 感度。由于气溶胶和 SO₂反演波段不一样,在气溶 胶消光廓线作为已知量输入模型时,338~370 nm 波段反演的气溶胶消光廓线需通过波长指数转化到 305~317.5 nm 波段,即

 $E_{\text{extinction}}(z, 313) = E_{\text{extinction}}(z, 360) \times (313/360)^{-\alpha},$ (3)

式中:z 为高度; α 为波长指数,由同一地点安装的 太阳光度计获取,这里取 $\alpha = 1.15$ 。

图 4 为 SO₂垂直分布廓线的反演示例。由于 采用变化先验廓线的方法进行迭代,反演廓线受 先验廓线的影响较小,如图 3(a)所示,且不同仰角 的测量结果和模拟结果都较为接近,如图 3(b)所 示。根据测量和模拟的差分斜柱浓度的差值对廓 线反演质量进行校验,只选取 O₄和 SO₂差分斜柱 浓度差值分别在 2×10^{42} molecule² • cm⁻⁵和 5× 10^{15} molecule • cm⁻²内的反演结果,质控后 SO₂的 有效测量循环数占总循环数的比例为 70.7%。

3 外场应用与对比研究

选取 2013 年 11 月到 2013 年 12 月期间的 3 个 晴朗时段(11 月 16 日—11 月 20 日,11 月 28 日— 12 月 2 日,12 月 27 日—12 月 31 日),利用两步反 演方法获得了 SO₂ 垂直分布廓线和垂直柱浓度,如 图 5 所示。在 3 个观测时段内,SO₂ 柱浓度日均值 都出现了先增加后减小的周期性变化,并在12 月 1 日达到最大值(1.03×10^{17} molecule · cm⁻²),为最 小日均值(11 月 16 日)的 3.6 倍。图 6 为测量和反 演得到的 SO₂ 差分斜柱浓度的线性相关性(R= 0.997),测量和反演得到的 SO₂ 差分斜柱浓度相差 较小,算法迭代使价值函数充分最小化^[16]。

图 4 SO₂垂直分布廓线反演示例。(a)先验廓线和 反演廓线;(b)测量结果和模拟结果的对比

Fig. 4 Retrieval example of SO₂ vertical profiles. (a) Priori profile and retrieved profile; (b) comparison between measured result and simulated result

图 7 为 2013 年 12 月 27 日到 2013 年 12 月 31 日 期间 SO₂体积分数的廓线时序图,由图可知,11 月 28 日 10:00,在约 800 m 高度观测到了 SO₂输送;在 其他时段,SO₂基本位于 500 m 以下,且其体积分数 一般低于 2×10^{-8} 。实验地点安装了国控站点的 CEMS(Continuous Emission Monitoring System)系 统,可以对近地面空气质量进行监测。为了验证 SO₂ 廓线反演结果,将MAX-DOAS获取的SO₂廓线最

图 6 反演和测量得到的 SO₂差分斜柱浓度的相关性分析 Fig. 6 Correlation analysis on retrieval and measured values of SO₂ differential slant column density

底层(0~100 m)结果转换为时均值和日均值,并与 点式仪器(CEMS系统)的结果进行对比,如图 8 所 示。图 8(a)为实验期间两种技术时均值结果的线 性相关性分析(线性相关系数R=0.97),图8(b)说

图 7 2013 年 12 月 27 日到 2013 年 12 月 31 日期间 SO_2 体积分数的廓线时序图 Fig. 7 Temporal series profiles of SO_2 volume fractions during December 27-31, 2013

图 8 MAX-DOAS 测量得到的 SO2浓度(0~100 m)与点式仪器结果的对比。(a)时均值;(b)日均值 Fig. 8 Comparison of SO2 concentration (0-100 m) measured by MAX-DOAS and point instrument results. (a) Hourly mean values; (b) daily mean values

明实验期间 3 个观测时段内日均值变化趋势相符,两种方法测量的近地面 SO₂浓度具有较高的一 致性。

4 结 论

本文研究了采用 MAX-DOAS 反演对流层 SO₂ 垂直廓线和垂直柱浓度的两步反演方法。该方法基 于测量的 O₄的差分斜柱浓度反演气溶胶廓线,将其 作为已知量代入模型,并结合非线性最优估算方法 反演对流层 SO₂垂直廓线和垂直柱浓度。通过反演 相对 误差 确定了 SO₂ 的最 佳反演 波段(307~ 330 nm),将反演方法应用于外场观测,测量和反演 得到的 SO₂的差分斜柱浓度的线性相关性系数 R= 0.997,MAX-DOAS 反演得到的最底层 SO₂浓度的 时均值与点式仪器结果的线性相关性系数为 0.97, 日均值结果变化趋势符合较好。本研究表明,基于 最优估算法的两步反演方法能够较好地反演对流层 SO₂垂直廓线和垂直柱浓度。下一步将研究气溶胶 和痕量气体先验廓线线型对反演过程的影响。

参考文献

- [1] Lee C, Richter A, Lee H, et al. Impact of transport of sulfur dioxide from the Asian continent on the air quality over Korea during May 2005[J]. Atmospheric Environment, 2008, 42(7): 1461-1475.
- [2] Claeys M, Graham B, Vas G, et al. Formation of secondary organic aerosols through photooxidation of isoprene[J]. Science, 2004, 303(5661): 1173-1176.
- [3] Beirle S, Hörmann C, Penning de Vries M, et al. Estimating the volcanic emission rate and atmospheric lifetime of SO₂ from space: a case study for Kilauea Volcano, Hawaii[J]. Atmospheric Chemistry and

Physics, 2014, 14(16): 8309-8322.

- [4] Wu F C, Xie P H, Li A, et al. Observations of SO₂ and NO₂ by mobile DOAS in the Guangzhou Eastern area during the Asian Games 2010[J]. Atmospheric Measurement Techniques, 2013, 6(9): 2277-2292.
- [5] Meng X Y, Wang P C, Wang G C, et al. Variation and transportation characteristics of SO₂ in winter over Beijing and its surrounding areas[J]. Climatic and Environmental Research, 2009, 14(3): 309-317.
 孟晓艳, 王普才, 王庚辰, 等. 北京及其周边地区冬 季 SO₂ 的变化与输送特征[J]. 气候与环境研究, 2009, 14(3): 309-317.
- [6] Boynard A, Clerbaux C, Clarisse L, et al. First simultaneous space measurements of atmospheric pollutants in the boundary layer from IASI: a case study in the North China Plain[J]. Geophysical Research Letters, 2014, 41(2): 645-651.
- Platt U, Stutz J. Differential optical absorption spectroscopy principles and applications [M]. Berlin, Heidelberg: Springer, 2008.
- [8] Hönninger G, von Friedeburg C, Platt U. Multi axis differential optical absorption spectroscopy (MAX-DOAS)[J]. Atmospheric Chemistry and Physics, 2004, 4(1): 231-254.
- [9] Li S W, Wei M H, Dai H F, et al. Reconstruction of spatial distributions of industrial emissions based on scaning multi-axis DOAS tomography [J]. Acta Optica Sinica, 2015, 35(4): 0401003.
 李素文,韦民红,戴海峰,等. 多轴 DOAS 断层扫描 技术重构工业排放空间分布[J].光学学报, 2015, 35(4): 0401003.
- [10] Mou F S, Li A, Wu F C, et al. Retrieval of aerosol optical parameters based on Ring effect observed by MAX-DOAS[J]. Acta Optica Sinica, 2017, 37(7): 0701001.

牟福生,李昂,吴丰成,等.基于 MAX-DOAS 观测

大气 Ring 效应的气溶胶光学参数反演[J].光学学报, 2017, 37(7): 0701001.

- [11] Mou F S, Luo J, Li S W, *et al*. Aerosol extinction retrieved with optical estimation algorithm based on multi-axis differential optical absorption spectroscopy
 [J]. Acta Photonica Sinica, 2018, 47(7): 0701002.
 牟福生, 維静, 李素文, 等. 基于多轴差分吸收光谱 技术的最优估算法反演气溶胶消光廓线研究[J]. 光 子学报, 2018, 47(7): 0701002.
- [12] Wang Y, Li A, Xie P H, et al. Retrieving vertical profile of aerosol extinction by multi-axis differential optical absorption spectroscopy[J]. Acta Physica Sinica, 2013, 62(18): 180705.
 王杨,李昂,谢品华,等. 多轴差分吸收光谱技术反 演气溶胶消光系数垂直廓线[J].物理学报, 2013, 62(18): 180705.
- Bobrowski N, von Glasow R, Aiuppa A, et al. Reactive halogen chemistry in volcanic plumes [J]. Journal of Geophysical Research, 2007, 112 (D6): D06311.
- [14] Conde V, Nilsson D, Galle B, et al. A rapid deployment instrument network for temporarily monitoring volcanic SO₂ emissions-a case study from Telica Volcano[J]. Geoscientific Instrumentation, Methods and Data Systems, 2014, 3(2): 127-134.
- [15] Wang Y, Lampel J, Xie P H, et al. Ground-based MAX-DOAS observations of tropospheric aerosols, NO₂, SO₂ and HCHO in Wuxi, China, from 2011 to 2014[J]. Atmospheric Chemistry and Physics, 2017, 17(3): 2189-2215.
- [16] Wang Y, Li A, Xie P H, et al. Measuring tropospheric vertical distribution and vertical column density of NO₂ by multi-axis differential optical absorption spectroscopy[J]. Acta Physica Sinica, 2013, 62(20): 200705.
 王杨,李昂,谢品华,等. 多轴差分吸收光谱技术测

量 NO₂对流层垂直分布及垂直柱浓度[J]. 物理学报, 2013, 62(20): 200705.

- [17] Zhou H J, Liu W Q, Si F Q, et al. Retrieval of atmospheric NO₂ vertical profile from multi-axis differential optical absorption spectroscopy[J]. Acta Optica Sinica, 2011, 31(11): 1101007.
 周海金,刘文清,司福祺,等.被动多轴差分吸收光 谱技术监测大气 NO₂垂直廓线研究[J].光学学报, 2011, 31(11): 1101007.
- [18] Tian X, Li A, Xu J, et al. Measuring tropospheric vertical column density of SO₂ by multi-axis differential

optical absorption spectroscopy[J]. Journal of Atmospheric and Environmental Optics, 2017, 12(1): 33-42.

田鑫,李昂,徐晋,等. 基于 MAX-DOAS 的大气对 流层 SO₂ 垂直柱浓度遥测 [J]. 大气与环境光学学 报, 2017, 12(1): 33-42.

- [19] Wang T, Hendrick F, Wang P, et al. Evaluation of tropospheric SO₂ retrieved from MAX-DOAS measurements in Xianghe, China[J]. Atmospheric Chemistry and Physics, 2014, 14(20): 11149-11164.
- [20] Wang Y, Beirle S, Lampel J, et al. Validation of OMI, GOME-2A and GOME-2B tropospheric NO₂, SO₂ and HCHO products using MAX-DOAS observations from 2011 to 2014 in Wuxi, China: investigation of the effects of priori profiles and aerosols on the satellite products[J]. Atmospheric Chemistry and Physics, 2017, 17(8): 5007-5033.
- [21] Vandaele A C, Hermans C, Simon P C, *et al.* Measurements of the NO₂ absorption cross-section from 42000 cm⁻¹ to 10000 cm⁻¹ (238-1000 nm) at 220 K and 294 K[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1998, 59(3/4/5): 171-184.
- [22] Bogumil K, Orphal J, Homann T, et al. Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: instrument characterization and reference data for atmospheric remote-sensing in the 230-2380 nm region[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 157(2/3): 167-184.
- [23] Hermans C, Vandaele A C, Fally S, et al. Absorption cross-section of the collision-induced bands of oxygen from the UV to the NIR[M] // Camy-Peyret C, Vigasin A A. Weakly interacting molecular pairs: unconventional absorbers of radiation in the atmosphere. NATO science series. Dordrecht: Springer, 2003, 27: 193-202.
- [24] Meller R, Moortgat G K. Temperature dependence of the absorption cross sections of formaldehyde between 223 and 323 K in the wavelength range 225-375 nm[J]. Journal of Geophysical Research: Atmospheres, 2000, 105(D6): 7089-7101.
- [25] Chance K V, Spurr R J D. Ring effect studies: Rayleigh scattering, including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum[J]. Applied Optics, 1997, 36(21): 5224-5230.